A Content-based Image Retrieval System Based On Convex Hull Geometry
نویسندگان
چکیده
Developments in data storage technologies and image acquisition methods have led to the assemblage of large data banks. Management of these large chunks of data in an efficient manner is a challenge. Content-based Image Retrieval (CBIR) has emerged as a solution to tackle this problem. CBIR extracts images that match the query image from large image databases, based on the content. In this paper, a novel approach of comparing the convex hull geometry of the query image to that of the database image in terms of a relative metric which is denoted as the Convex Hull Area Ratio (CHAR) is used. The metric CHAR is the ratio of the area of the intersection of the two convex hulls to the area of their union. Convex hull shape polygon is extracted from the database images and the coordinate values are stored in the feature library. When a query image is given, the convex hull values are extracted in the same fashion. Ratio of the intersected area to union area of the two convex hulls (CHAR) are found and stored in an array. Subsequently, similarity measurement is performed and the maximum value of the CHAR indicates the closest match. Thus, the database images that are relevant to the given query image are retrieved. Scale and translational invariance have been preserved by a suitable co-ordinate transformation. The proposed CBIR technique is evaluated by querying different images and the retrieval efficiency is evaluated by determining precision-recall values for the retrieval results.
منابع مشابه
Sweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کامل